

Estimating the external costs of nitrogen fertilizer in Minnesota

2015 FARM BILL ASSISTANCE PARTNERSHIP WINTER MEETING

January 30, 2015
Jesse Gourevitch
GourevitchJ@gmail.com

The estimated social cost of nitrogen fertilizer application is \$893 million annually

Road Map

Why estimate the external costs of nitrogen fertilizer?

Land use and nitrogen fertilizer application in Minnesota

Spatially-explicit damage cost estimates

Where do we go from here?

Road Map

Why estimate the external costs of nitrogen fertilizer?

Land use and nitrogen fertilizer application in Minnesota

Spatially-explicit damage cost estimates

Where do we go from here?

Private benefits of nitrogen fertilizer

External costs to public

Groundwater

Groundwater

Need for cost estimates

Targeting spatial planning

Conceptual framework

Land use

(Nitrogen fertilizer application)

(Air and water quality)

Impacts to people

(Damages to health)

External costs

(Avoidance behaviors & premature death)

Recent land use change across the Midwest

Source: NASS, Noe et al. 2014

~40% of Minnesota land cover is cropland

Source: NASS 2012

Over 550 million kg nitrogen fertilizer applied annually

Source: Gronberg and Spahr 2012

Groundwater

Nitrate loss increases exponentially with application rate

Nitrogen Fertilizer Application

Nitrate loss increases exponentially with application rate

Nitrogen Fertilizer Application

Estimating cost of domestic well contamination

Assemble well datasets and explanatory variables, including nitrate load

Parameterize
logistic regression
model using wells
with known nitrate

Use parameterized model to predict contamination of wells with unknown nitrate

Apply surveyed cost estimates to contaminated wells

Vulnerability of Shallow Groundwater and Drinking-Water Wells to Nitrate in the United States

BERNARD T. NOLAN* AND KERIE J. HITT U.S. Geological Survey, 413 National Center, Reston, Virginia 20192

Well datasets

Source: County Well Index

Observed nitrate groundwater contamination

Approximates 70,000 wells with known locations and known nitrate concentrations

Over 500 wells exceed MCL (10 ppm)

Contamination is concentrated in Central Sands and Southeast, MN

Source: County Well Index

Predicting well contamination using logistic regression

Predicted domestic well contamination

Total number wells contaminated = 4,749

Predicted cost of domestic well contamination

Total annual cost of well contamination = \$2.7 million

Costs of public water supply contamination

Annual cost = \$4 million

Groundwater

Damages from air emissions

GHG emissions to damage costs

Social cost of carbon

(\$0.03/kg CO₂) (\$12.95/kg N₂O)

Social cost of GHG emissions from fertilizer application

Fertilizer application to emissions

Emission factors

GHGs: CO_2 , N_2O Pollutants: NH_3 , NO_x

Premature deaths from PM_{2.5}

Emissions-tohealth impact model

(InMAP)

Cost of premature deaths due to PM formation

Cost of GHG emissions

Annual cost = \$96 million

> \$50 million

Cost of premature deaths from PM_{2.5}

Annual premature deaths = 86

Annual Cost = \$791 million

Per capita cost to each parcel

Cost of premature deaths from PM_{2.5}

Annual premature deaths = 86

Annual Cost = \$791 million

Per hectare cropland cost from each county

Summary of annual costs

Damage	Cost estimate
Domestic well contamination	\$3 million
Public water supplier contamination	\$4 million
Greenhouse gas emissions	\$96 million
Air pollutant emissions	\$791 million
TOTAL	\$893 million

Land-Use Scenarios

Fertilizer management scenario:

Reducing fertilizer application by 20% is estimated to reduce external costs of nitrogen fertilizer application by 22% (\$200 million annually)

Business-as-usual scenario:

Fertilizer application in 2012, as compared with in 2007, is estimated to increase costs by 10% (\$86 million annually)

Other costs associated with nitrogen

Nitrate and human health

Nitrate and aquatic pests and parasites

Nitrate and livestock

Nitrate and property values

Nitrate and aquatic ecosystems

Take-away messages

There are large benefits of fertilizer application. However, there are also many external costs

These costs are incurred by society and are clustered in particular regions of the Minnesota

By estimating the social costs of nitrogen, we can:

- 1. Better quantify the benefits of fertilizer regulations
- 2. Spatially target interventions for improved fertilizer management

Acknowledgements

My co-author: Bonnie Keeler

Our funders: MN Center for Environmental Advocacy

Data providers: MDH, MGS

Questions?

